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Abstract 

The self-gravitating instability of fluid cylinder penetrated by azimuthally varying magnetic field internally has 

been developed. Upon using the linear perturbation technique, the problem is studied, the dispersion relation is 

established and discussed. Some reported works are recovered from the present general data as limiting cases 

with suitable simplifications.  Copyright © acascipub.com, all rights reserved.  
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1- Introduction 

The self-gravitating instability of a fluid cylinder has been studied for first time by Chandrasekhar and Fermi 

(1953). See also Oganesian (1956). Chandrasekhar (1981) documented the results studies. Radwan (1989) and 

(1991) has studied the pure self gravitating instability of a fluid cylinder surrounded by another fluid of different 

density whether the latter is radially bounded or not. Such kind of studies are very important not only from the 

academic view-point but also for their crucial applications of many phenomena ranging from laboratory scale to 

astrophysical ones e.g. stability of spiral arm of galaxy,…etc., where the latter idea has received support from 

the arguments of a quasi-stationary spiral structure, cf. Lin, (1966), Kakutani et al, (1994), Lardner (1983) and 

Radwan (2005). The stability of different cylindrical models under the action of self gravitating force in addition 

to other forces has been elaborated by Radwan and Hasan (2008) and (2009). They (2008) studied the 

gravitational stability of a fluid cylinder under transverse time-dependent electric field for axisymmetric 

perturbations. Hasan (2011) has discussed the stability of oscillating streaming fluid cylinder subject to 

combined effect of the capillary, self gravitating and electrodynamic forces for all axisymmetric and non 

axisymmetric perturbation modes. Hasan (2011) studied the instability of a full fluid cylinder surrounded by 
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self-gravitating tenuous medium pervaded by transverse varying electric field under the combined effect of the 

capillary, self-gravitating and electric forces for all modes of perturbations. He (2012) discussed the instability 

of a full fluid cylinder surrounded by selfgravitating tenuous medium pervaded by transverse varying electric 

field under the combined effect of the capillary, self-gravitating and electric forces for all modes of 

perturbations. He (2012) studied the magnetodynamic stability of a fluid jet pervaded by transverse varying 

magnetic field while its surrounding tenuous medium is penetrated by uniform magnetic field. 

Here we investigate the axisymmetric hydromagnetic instability of a fluid cylinder penetrated by azimuthal 

varying magnetic field. 

 

2- Formulation of the Problem 

Consider a fluid cylinder (radius Ro) surrounded by tenuous medium of negligible motion. The fluid is assumed 

to be non-viscous, incompressible and perfectly conducting and penetrated by the toroidal varying magnetic 

field 

)0,,0( 00 rHH                   (1) 

The tenuous medium is pervaded by the axial magnetic field  

) ,0,0( 00 HH
tn

                  (2) 

where Ho is the intensity of the magnetic field in the tenuous medium as the parameter  (=1). The components 

of 0H  and 
tn
0

H  are considered along the cylindrical coordinates (r, ,z) with the z-axis coinciding with the 

axis of the fluid cylinder. The model is acting upon the self gravitating, electromagnetic and the fluid pressure 

gradient forces. The basic equations are coming out from the combination of Maxwell equations concerning the 

electromagnetic theory, the ordinary fluid dynamic equations and Newtonian self-gravitating equations.                  

For the problem at hand, these equations may be given as follows. 

In the fluid:  

VHHP
dt

ud
  )(                (3) 

)( Hu
t

H
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                  (4)  
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0 H                    (6) 

      GV 42                    (7)  

with  





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tdt
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




















z
,

r

1
,

r 
                  (9)  

In the tenuous medium  

      0
tn

H                                                  (10) 

     0
tn

H                  (11) 

       02  tnV                 (12) 

Here , u and P are the fluid mass density, velocity vector and kinetic pressure,  and H are the magnetic field 

permeability coefficient and intensity, G and V are the self gravitating constant and potential. Equation (3) is 

MHD gravitational vector equation of motion, equation (4) is the elevation equation of magnetic field valid for 

non-resistive magnetized fluid, equation (5) is the continuity equation concerning incompressible fluid, equation 

(6) is the conservation of magnetic flux and idem equation (10). Equations (7) and (2) are the Newtonian self 

gravitating equations in the fluid and tenuous medium while  equation (11) is  Maxwell equation where there is 

no current in the tenuous medium.  
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3 - Unperturbed State  

The fundamental equations (3) – (12) in the equilibrium state are solved with cylindrical and longitudinal 

symmetries 0





 and 0

z





. The solution is matched across the boundary surface at r=Ro.  

The self gravitating potentials in the fluid V0 and in the tenuous medium 
tn
0

V are given by:  

V0 = - Gr
2
                             (13)  

  10

2

00 /ln(2 CRrRGV tn                  (14) 

where C1 is an additive constant while the quantities with subscripts 0 indicate their values in the unperturbed 

state, taking into account for the problem at hand that the unperturbed state is a static one u0 = 0. The 

hydromagnetic self gravitational equation of motion (3), yields  

        0 = 0                             (15) 

with 

                           0 = C2                              (16) 

Such that        

  
00

22

00 )/(
2

VPrH 







 


               (17) 

The constant of integration C2 could be determined upon applying the boundary condition that the balance of the 

pressure must be satisfied across the boundary r= R0. Consequently, the distribution of the fluid pressure P0 in 

the unperturbed state is given by  

  )()2/( 222

0

22

0

2

0 rHrRGP                            (18)  

It is worthwhile to mention here that Po must be non-negative across the interface r = Ro   to insure the existing 

of the unperturbed state. Therefore, in order that  

P0 > 0                   (19)  

at r = Ro, the parameter  must satisfy the condition  

 > R0                             (20) 

where the equality holds as a limiting case with zero fluid pressure.  

 

4 - Linearization  

Consider an axisymmetric sinusoidal wave along the fluid cylinder interface. For a small departure from the 

unperturbed state, linearization of the basic equations (3) – (12) is accomplished by substituting the expansions  

P(r, z, t) = P0 + (t) P1 (r,z)                           (21)  

u(r, z, t) = u0 + (t) u1 (r,z)                           (22)  

H(r, z, t) = H0 + (t) H1 (r,z)                                      (23)  

V(r, z, t) = V0 + (t) V1 (r,z)                                      (24)  
tn

H  (r, z, t) = 
tn

H 0  + (t) 
tn

H 1  (r,z)                          (25)  

V
tn

 (r, z, t) = 
tnV0  + (t) 

tnV1
 (r,z)                          (26)  

 

and retaining only first-order terms in the small fluctuating variables P1, u1, H1, V1, 
tn

H 1  and 
tnV1

. Here (t) is, 

the amplitude of the perturbation at instant t, being  

          (t) = 0 exp (it)                          (27)  

where o is the initial amplitude at t=0 while  is the oscillation frequency of the perturbed wave.  

         The linearized perturbation equations are given as follows.  

In the fluid:  

11001
1 ))(/().)(/( 




HHHH

t

u
             (28)  

)2)(2/()/( 10111
HHVP                 (29)  
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     .u1 = 0  ,  .H1 = 0                                          (30), (31)  

0110

1 ).().( HuuH
t

H





               (32)  


2
V1 = 0                 (33)  

In the tenuous medium  

0. 1 
tn

H                 (34)  

0. 1 
tn

H                 (35)  

01

2  tnV                 (36)  

Based on the linear perturbation technique, the perturbed radial distance of the fluid cylinder may be given by  

R = R0 + R1  ,  R1 << R0                          (37)  

with  

R1 = (t) exp i(kz)                            (38)  

 

Here R1 is the elevation of the surface wave measured from the unperturbed position, where k (real number) is 

the longitudinal wave number.  

         In view of the time-space dependence (38), the linearized system of equations (28) – (33) could be 

expressed in terms of the different vectors in the following form  

r
ui r




 1

1                            (39) 

01 u                     (40) 

11  ikui z                            (41) 
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z
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Based on the linear perturbation technique, every perturbed quantity F1 (r, z , t) could be expressed as  

F1 (r,z,t) = F1(r) exp[ i (kz + t)]                          (48)  

where F1 stands for u1r, u1, u1z, H1r, H1, H1z and 1.  

       By substituting from equations (39) – (41) into equation (42) and utilizing the expansion (48), we get  

0
1

1

21

2

1

2







k
dr

d

rdr

d
              (49)  

The linearized perturbation equations in the tenuous medium are given by equations (34) – (36).  

Equation (35) means, by the aid of the vector analysis theory, that 
tn

H 1  may be derived from a scalar function 

1 say, such that  

11 
tn

H                 (50) 

By using equation (3.50) for equation (3.34), we have  


2
 1 = 0                             (51)  

Substituting the expansion (48) into equations (36) and (51), we get  
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0
1

1

21

2

1

2

 tn
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rdr

Vd
                                                (52)  
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

k
dr

d
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d
                                                (53) 

Equations (49), (52) and (53) are in the form of Bessel equation, their solutions are given in terms of the 

modified Bessel functions.  

Under the present circumstances, for the problem at hand, the non-singular solutions of equations (47), (49), 

(52) and (53) are given by: (cf. Gradshtyen and Ryzhik 1980)  

1 (r,z,t) = AI0 (kr) exp (i (t + kz))                                      (54)  

 

V1 (r,z,t) = BI0 (kr) exp (i (t + kz))                                      (55)  

 
tnV1

(r,z,t) = Ck0 (kr) exp (i (t + kz))                                      (56)  

 
tn

H 1 (r,z,t) =-DK0 (kr) exp (i (t + kz))                          (57)  

Here, A, B, C and D are constants of integration to be determined while I0(kr) and K0(kr) are the modified 

Bessel functions of first and second kind of order zero. 

  

5 - Dispersion Relation 

 
In order to identify the constants of integration A, B, C and D, the solutions (54)-(57) must satisfy appropriate 

boundary conditions across the fluid interface at r = Ro. We have also to consider the contribution of the 

solutions (13), (14) and (18) due to perturbation and that the boundary surface r =Ro is displaced according to 

the deformation (37).  

For the problem at hand these boundary conditions are given as follows.  

  (i)   The self gravitating potential V(=V0 + V1) and its derivative must be continuous across the 

perturbed fluid interface at r = Ro, i.e.  

r

V
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
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
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                         (59)  

By substituting about V0, V1, R1, 
tnV1

, we get 

 B = 4πGR0K0(x)                          (60) 

 C = 4πGR0I0(x)                          (61) 

    (ii)  The normal component of the magnetic field (N.H) must be continuous across the perturbed 

fluid interface at r = R0. This condition reads  

 

N0.H1 + N1.H0 = (N0.H1 + N1.H0)
tn

                                      (62)  

where N is a unit outward normal vector to the perturbed fluid interface. It is given by  

N = N0+ N1                           (63)  

with  

          N0 = (1,0,0)                           (64)  

 

N1 = (0,0,-ik)R1                (65) 

 

By substituting about N0 , N1 , H0 , H1 , 1H , 
tn

H 1  and 
tn

H 1 in the condition (62), yields  

)(0

0

xK

iH
D




                 (66) 

where x(=kR0) is the dimensionless longitudinal wave number.  

(iii)   The normal component of the velocity u must be compatible with the velocity of the 

fluid-tenuous perturbed fluid interface at r = R0. This condition may be written as  
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N0.u1 + N1.u0 = 
t

r




                                                (67)  

 Substituting for N0,N1 , u0 (=0), u1 and r into the condition (3.67), we get  

)(/( 00

2 xxIRA                 (68) 

(iv)    Now, we have to go one more step after we have obtained all the problem variables in 

the unperturbed and perturbed states that we have to apply some compatibility condition.  

"The normal component of the total stress tensor must be continuous across the perturbed fluid interface at r = 

Ro" . Mathematically this condition reads :  
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(69) 

 

By substituting for H0, 
tn
0

H , H1 and 
tn
1

H , R1, P1 and P0 in the condition (69), we get the dispersion relation 
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
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






                          (70) 

 

6 - Discussions  

 
The relation (70) is the magneto-gravitational stability criterion of self gravitating fluid cylinder pervaded by 

azimuthal magnetic field and surrounded by magnetized self gravitating tenuous medium penetrated by uniform 

magnetic field. The relation (70) is a linear combination of dispersion relations of a fluid cylinder subject to the 

electromagnetic force only and that one subject to self gravitating force only. It relates the oscillation frequency 

of the perturbed wave (along the fluid interface)  with the modified Bessel functions I0(x), K0(x) of zero order 

and their derivatives and with the parameters G, , , Ho and Ro, of the problem.  

It is worthwhile to mention here that in absence of the magnetic field influence, the relation (70) reduces to  









 )()(

2

1

)(

)(
4 00

0

2 xKxI
xI

xxI
G



               (71) 

where use has been made of the recurrence relation 

)()( 10 xIxI 
                                      (72) 

The relation (71) is derived for first time by Chandrasekhar and Fermi (1953).  

As we neglect the effect of the self gravitating force, the relation (70), yields  
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22
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H 




                            (73)  

where use has been made of the recurrence relations (3.72) and  

)()( 10 xKxK 
               (74)  

 

6.1- Self Gravitating Stability 

 
In such a case the cylindrical fluid cylinder is considered to be acted upon the self gravitating and the fluid 

pressure gradient forces only while the electromagnetic force influence is neglected. The dispersion relation of 

such a case is given by (71).  

The discussion of this relation reveal that the model is self gravitating stable for short wavelengths while it is 

unstable for very long wavelengths. Numerically (see Abramowitz and Stegun (1970)) it is found that  
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This means that the model is self gravitating unstable in the domain 0< x  <1.0667 while it is stable in the wide 

domain 1.0667 < x  <  where the equality corresponds to the marginal stability state.  

 

6.2 - Magento-Dynamic Stability 

 
 In this case the model is acting upon the electromagnetic forces with toroidal varying magnetic field interior the 

fluid jet and uniform magnetic field in the tenuous medium surrounding the jet. The dispersion relation of the 

present case is given by equation (73). The discussion of this relation reveal that the model is magnetodynamic 

stable for all values of  x  0 i.e. for all short and long wavelengths. It is clear that the uniform magnetic field 

pervaded in the tenuous medium has no influence on the stability of the fluid cylinder.  

The stabilizing character of the azimuthal magnetic field in the fluid region due to the presence of the 

electromagnetic force    HH    may be interpreted as follows. This force is interpreted as arising 

from the action on the fluid of the Maxwell’s stresses: a magnetic tension   2/HH   per unit area along the 

magnetic lines of force and equal magnetic pressure acting in all directions in the conducting fluid. It is 

worthwhile to mention here that the latter is not perpendicular to the magnetic lines of force and acting in all 

directions because the diffusion term is neglected in the evolution equation of the magnetic field (4). Due to 

these stresses the lines of force are able to endow the fluid with a sort of rigidity 

 

6.3 - Magneto-Gravitational Instability 

 
This is the general case in which the fluid cylinder is acting upon the combined effect of the fluid pressure 

gradient, self-gravitating and electromagnetic forces. The dispersion relation of such case is given by equation 

(70).  

The discussion of this relation could be carried out by the aid of the results of the subsections (6.1) and (6.2). 

The model is purely magneto-gravitational stable in the wide range 1.0667 < x  < . While in the small range 0 

< x  < 1.0667, the magnetic field decreases the destabilizing effect of the self gravitating force and 

simultaneously increases the stable domain. However, the magnetic field could not suppressed the self 

gravitating effect because the gravitational instability of sufficiently long waves will persist and the reason for 

this lies in the logarithmic singularity of the gravitational potential energy for infinite wavelengths.  

         In order to clarify such analytical discussions, the dispersion relation (70) has to be calculated numerically. 

For this aim the relation (70) may be written in the dimensionless form  


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



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xKxI

xIxKx
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xKxI
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xxI

G G


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
                                        (76) 

This relation is calculated for different values of  and (H0/HG). The data are tabulated and presented 

graphically where we find that the analytical results are confirmed  numerically, see for example fig. (1) . 

 

8 - Numerical Analysis 

 
The dispersion relation (70) has been discussed numerically for all short and long wavelengths in which the 

dimensionless wave number is taken to be 

 0 < x  ≤ 2 and the corresponding values of  or  in the normal unit G4   where ( /2 is the frequency 

of oscillation ) are determined. This has been performed for various values of  GHH0
. Then for every 

value of  GHH0 , different values of α  is considered where   /40 GRH G   . 

  

The numerical data are collected in tables, see tables  (1)  (5)  and presented in graphs,  see figures  (1)  (5). 

There are many features of interest in these tables and figures. 

 

Corresponding to  (  GHH0  = 0.1,  as α = 1,1.1,1.2,1.5 and 3; it is found that the unstable domains are  0 

< x  < 1.041 , 0 < x  < 1.036 , 0 < x  < 1.031 , 0 < x  < 1.014  and  0 < x  < 0.912 , while the neighboring stable 

domains are given by  1.041 < x  <  ,  1.036< x  <  , 1.031< x  <  , 1.014 < x <   and 0.912 < x  <  . 
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The critical points at which the transition from stable states to those of instability are occurred at  cx = 1.041 , 

1.036, 1.031 , 1.014 and 0.912 respectively. See figure ( 1 ) and table (1 ) . 

  

Corresponding to  (  GHH0
 = 0.5,  as α = 1,1.1,1.2,1.5 and 3; it is found that the unstable domains are  0 

< x  < 0.784, 0 < x  < 0.756 , 0 < x  < 0.73 , 0 < x  < 0.66  and  0 < x  < 0.441 , while the neighboring stable 

domains are given by  0.784 < x  <  ,  0.756< x  <  , 0.73< x  <  , 0.66 < x <   and  0.441 < x  <  . The 

critical points at which the transition from stable states to those of instability are occurred at  cx = 0.784 , 0.756, 

0.73 , 0.66 and 0.441 respectively. See figure ( 2 ) and table ( 2 ) . 

 

 Corresponding to  (  GHH0
 =1,  as α = 1,1.1,1.2,1.5 and 3; it is found that the unstable domains are  0 < x  

< 0.5675 , 0 < x  < 0.537 , 0 < x  < 0.5095 , 0 < x  < 0.441  and  0 < x  < 0.2615 , while the neighboring stable 

domains are given by  0.5675 < x  <  ,  0.537< x  <  , 0.5095< x  <  , 0.441< x <   and 0.2615 < x  <  . 

The critical points at which the transition from stable states to those of instability are occurred at  cx = 0.5675 , 

0.537, 0.5095 , 0.441 and 0.2615 respectively. See figure ( 3 ) and table ( 3 ) .  

 

Corresponding to  (  GHH0
 = 3,  as α = 1,1.1,1.2,1.5 and 3; it is found that the unstable domains are  0 < x  

< 0.2615 , 0 < x  < 0.2415 , 0 < x  < 0.2245 , 0 < x  < 0.185  and  0 < x  < 0.0985 , while the neighboring stable 

domains are given by  0.2615 < x  <  ,  0.2415< x  <  , 0.2245< x  <  , 0.185 < x <   and  0.0985 < x  < 

 . The critical points at which the transition from stable states to those of instability are occurred at  cx = 

0.2615 , 0.2415, 0.2245 , 0.185 and 0.0985 respectively. See figure ( 4 ) and table ( 4 ) . 

 

From the above results we note that as we increase the magnetic field the values of  cx  decrease and the 

unstable regions tends to be canceled to confirm this fact we will take the following case  

 

Corresponding to  (  GHH0
 = 10,  as α = 1,1.1,1.2,1.5 and 3; it is found that the unstable domains are near 

to be canceled  and the values of the growth rate of oscillation are directly increase as the values of x increase. 

See figure ( 5 ) and table ( 5 ) .  

 

9 - Conclusions 

 
The self gravitating instability of fluid cylinder penetrated by toroidal varying magnetic field internally has been 

developed. Upon using the linear perturbation technique, the problem is studied, the dispersion relation is 

established and discussed. Some reported works are recovered from the present general data as limiting cases 

with suitable simplifications.. The electromagnetic force has stabilizing effect for all perturbed wavelengths. 

The uniform magnetic field penetrated in the tenuous medium has no direct influence on the stability of the 

model.  

The self gravitating force is stabilizing for very short wavelengths but it is destabilizing otherwise . The 

magnetic field influence decreases the self gravitating destabilizing character but never suppressed it. This is 

due to the fact that the gravitational instability of sufficiently long waves will persist and the reason for that lies 

in the logarithmic singularity of the gravitational potential energy for infinite wavelengths. 

 

 

X             

1 1.1 1.2 1.5 3 

σ* 

0.01 0.014528 0.014528 0.014528 0.014528 0.014528 

0.06 0.074767 0.074767 0.074766 0.074764 0.074749 

0.13 0.118961 0.118958 0.118955 0.118944 0.118854 

0.19 0.153858 0.15385 0.15384 0.153808 0.153535 

α 
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0.25 0.181693 0.181674 0.181653 0.18158 0.180967 

0.31 0.203647 0.203611 0.203571 0.203431 0.202259 

0.37 0.22045 0.220387 0.220318 0.220076 0.21805 

0.43 0.232579 0.232478 0.232368 0.231977 0.228697 

0.49 0.240348 0.240193 0.240022 0.239421 0.234347 

0.55 0.243938 0.243707 0.243453 0.242556 0.23495 

0.61 0.243413 0.243075 0.242706 0.241398 0.230215 

0.67 0.238703 0.23822 0.237688 0.235808 0.219513 

0.73 0.229574 0.228884 0.228126 0.225435 0.201617 

0.79 0.215535 0.214548 0.213461 0.209589 0.174004 

0.85 0.195644 0.194208 0.192623 0.186934 0.130186 

0.91 0.167992 0.165814 0.163395 0.154575 ω* 

0.97 0.127855 0.124156 0.119974 0.103915 0.138438 

1.03 ω* ω* ω* ω* 0.205714 

1.09 0.112383 0.118804 0.12546 0.146514 0.263027 

1.15 0.172124 0.177414 0.103032 0.201574 0.316326 

1.21 0.219629 0.0.224772 0.230274 0.248683 0.367858 

1.27 0.261587 0.2669 0.272601 0.29179 0.418804 

1.33 0.300299 0.305956 0.312034 0.332555 0.469919 

1.39 0.336878 0.343007 0.349597 0.371875 0.521758 

1.45 0.371969 0.378683 0.385903 0.410319 0.574775 

1.51 0.405993 0.413403 0.421368 0.448295 0.629376 

1.57 0.439258 0.447475 0.456304 0.486124 0.685937 

1.63 0.472003 0.481146 0.490964 0.52408 0.74483 

1.69 0.50443 0.514627 0.525569 0.562409 0.806424 

1.75 0.536719 0.54811 0.56032 0.601349 0.871096 

1.81 0.56904 0.581776 0.595412 0.641131 0.939233 

1.87 0.601556 0.615803 0.631039 0.681989 1.01124 

1.93 0.634431 0.650372 0.667394 0.724163 1.08753 

1.99 0.667834 0.685667 0.704681 0.767903 1.16855 

xc 1.041 1.036 1.031 1.014 0.912 

 
Table (1): Values of the temporal amplification σ* (or the oscillation    frequency ω*)  for Ho/ HG = 0.1.  

 
 

X 

1 1.1 1.2 1.5 3 

σ* 

0.01 0.014528 0.014528 0.014528 0.014528 0.014526 

0.07 0.074713 0.074701 0.074688 0.074643 0.074261 

0.13 0.118639 0.118568 0.118491 0.118218 0.115919 

0.19 0.152887 0.152674 0.15244 0.151613 0.14454 

0.25 0.179507 0.179025 0.178496 0.17662 0.160133 

0.31 0.199455 0.198527 0.197504 0.193862 0.160318 

0.37 0.213169 0.211543 0.209748 0.203299 0.138324 

0.43 0.220727 0.218048 0.215076 0.204265 ω* 

0.49 0.22186 0.217606 0.21285 0.195178 0.148296 

0.55 0.215852 0.209206 0.201676 0.172561 0.247027 

α 
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0.61 0.201239 0.190775 0.178612 0.126806 0.340256 

0.67 0.174927 0.157572 0.136046 ω* 0.43501 

0.73 0.128608 ω* ω* 0.174784 0.533696 

0.79 ω* 0.112673 0.155959 0.255487 0.637595 

0.85 0.160338 0.199261 0.234595 0.330185 0.747607 

0.91 0.234252 0.270279 0.304892 0.40382 0.864485 

0.97 0.300315 0.336889 0.372852 0.478444 0.988935 

1.03 0.363837 0.402403 0.440787 0.555225 1.12166 

1.09 0.426955 0.468405 0.509952 0.634982 1.26338 

1.15 0.490848 0.535869 0.581189 0.71838 1.41485 

1.21 0.556313 0.605502 0.655151 0.806009 1.57688 

1.27 0.623967 0.677889 0.732405 0.898434 1.5703 

1.33 0.694343 0.753556 0.813479 0.996213 1.93603 

1.39 0.767932 0.833003 0.898884 1.09991 2.13502 

1.45 0.845209 0.916724 0.989134 1.21012 2.3483 

1.51 0.92665 1.00522 1.08476 1.32745 2.57697 

1.57 1.01274 1.09899 1.18629 1.45254 2.82218 

1.63 1.10397 1.19859 1.2943 1.58605 3.08519 

1.69 1.20086 1.30455 1.40939 1.72871 3.36732 

1.75 1.30395 1.41747 1.53217 1.88125 3.66999 

1.81 1.41381 1.53795 1.66331 2.04449 3.9947 

1.87 1.53103 1.66663 1.80349 2.21925 4.34308 

1.93 1.65625 1.80421 1.95345 2.40643 4.71685 

xc 0.784 0.756 0.73 0.66 0.441 

 
Table (2):Values of the temporal amplification σ* (or the oscillation    frequency ω*) for Ho/ HG = 0.5 . 

 

 

x 

1 1.1 1.2 1.5 3 

σ* 

0.01 0.014527 0.014527 0.014527 0.014526 0.014521 

0.07 0.074544 0.074496 0.074444 0.074261 0.072713 

0.13 0.117627 0.117341 0.117028 0.115919 0.106228 

0.19 0.149811 0.148939 0.147977 0.14454 0.11186 

0.25 0.172497 0.170483 0.168249 0.160133 ω* 

0.31 0.185748 0.181724 0.177213 0.160318 0.147716 

0.37 0.188616 0.181145 0.172592 0.138324 0.263921 

0.43 0.178689 0.165011 0.148592 0.628166 0.383624 

0.49 0.150055 0.122634 ω* ω* 0.512189 

0.55 ω* ω* 0.132055 0.247027 0.651323 

0.61 0.134553 0.185776 0.229094 0.340256 0.80199 

0.67 0.227679 0.273716 0.316546 0.43501 0.964971 

0.73 0.310603 0.357936 0.403455 0.533696 1.14103 

0.79 0.392106 0.442961 0.492672 0.637595 1.33099 

α 
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0.85 0.475038 0.530705 0.585634 0.747607 1.53574 

0.91 0.560844 0.622298 0.683292 0.864485 1.75624 

0.97 0.650473 0.718564 0.786404 0.988935 1.99357 

1.03 0.744668 0.820203 0.895653 1.12166 2.24889 

1.09 0.844085 0.927865 1.01169 1.26338 2.82346 

1.15 0.949348 1.04219 1.13519 1.41485 2.81865 

1.21 1.06108 1.16382 1.26682 1.57688 3.13594 

1.27 1.1799 1.29343 1.4073 1.7503 3.47694 

1.33 1.30648 1.43173 1.55738 1.93603 3.84335 

1.39 1.44151 1.57945 1.71786 2.13502 4.23702 

1.45 1.5857 1.73737 1.88957 2.3483 4.65994 

1.51 1.73982 1.90633 2.07341 2.57697 5.11422 

1.57 1.90467 2.0872 2.27033 2.82218 5.60215 

1.63 2.08113 2.28091 2.48134 3.08519 6.12615 

1.69 2.2701 2.48848 2.70751 3.36732 6.68883 

1.75 2.47254 2.71094 2.95001 3.66999 7.29298 

1.81 2.6895 2.94942 3.21004 3.9947 7.94157 

1.87 2.92206 3.20513 3.4889 4.34308 8.6378 

1.93 3.17139 3.47934 3.788 4.71685 9.38507 

1.99 3.43873 3.7734 4.10879 5.11783 10.187 

xc 0.5675 0.537 0.5095 0.441 0.2615 

 
Table (3):Values of the oscillation frequency ω* for Ho/ HG =1.0 

 
 

x 

1 1.1 1.2 1.5 3 

σ* 

0.01 0.014521 0.014519 0.014518 0.014512 0.014462 

0.07 0.072713 0.072273 0.071789 0.070057 0.053483 

0.13 0.106228 0.103351 0.100106 0.087727 ω* 

0.19 0.11186 0.100829 ω* ω* 0.277244 

0.25 ω* ω* 0.097945 0.183241 0.483162 

0.31 0.147716 0.18742 0.222934 0.317842 0.727132 

0.37 0.263921 0.307433 0.348918 0.466513 1.00833 

0.43 0.383624 0.435292 0.485614 0.631683 1.32629 

0.49 0.512189 0.574138 0.536091 0.814195 1.68108 

0.55 0.651323 0.725202 0.79831 1.01467 2.07325 

0.61 0.80199 0.889306 0.976015 1.23378 2.50379 

0.67 0.964971 1.0672 1.16895 1.47232 2.97408 

0.73 1.14103 1.25966 1.37792 1.73123 3.48587 

0.79 1.33099 1.46757 1.60386 2.01161 4.04125 

α 
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0.85 1.53574 1.69186 1.84777 2.31469 4.64263 

0.91 1.75624 1.93359 2.1108 2.64187 5.29273 

0.97 1.99357 2.19392 2.3942 2.9947 5.9946 

1.03 2.24889 2.47413 2.69935 3.37488 6.75161 

1.09 2.52346 2.77559 3.02774 3.78427 7.56743 

1.15 2.81865 3.09981 3.38102 4.22489 8.44609 

1.21 3.13594 3.4484 3.76095 4.69895 9.39193 

1.27 3.47694 3.82312 4.16942 5.2088 10.4097 

1.33 3.84335 4.22585 4.60849 5.75701 11.5044 

1.39 4.23702 4.65861 5.08037 6.34632 12.6816 

1.45 4.65994 5.12359 5.58742 6.97967 13.9471 

1.51 5.11422 5.62311 6.13219 7.66025 15.3072 

1.57 5.60215 6.15966 6.71739 8.39144 16.7687 

1.63 6.12615 6.73594 7.34595 9.17688 18.3389 

1.69 6.68883 7.35478 8.02097 10.0205 20.0256 

1.75 7.29298 8.01927 8.74581 10.9264 21.837 

1.81 7.94157 8.73268 9.52402 11.899 23.782 

1.87 8.6378 9.4985 10.3594 12.9432 25.8703 

1.93 9.38507 10.3205 11.2561 14.0641 28.1119 

1.99 10.187 11.2026 12.2185 15.267 30.5177 

xc 0.2615 0.2415 0.2245 0.185 0.0985 

 
Table (4):Values of the temporal amplification σ* (or the oscillation    frequency ω*) for Ho/ HG = 5.0 

 
 

x 

1 1.1 1.2 1.5 3 

σ* 

0.01 0.014447 0.014429 0.014411 0.014344 0.013777 

0.07 0.047118 0.038889 0.02715 0.044642 0.157299 

0.13 0.133196 0.156331 0.178257 0.240024 0.522409 

0.19 0.316938 0.355694 0.393788 0.505587 1.04572 

0.25 0.544018 0.60419 0.663864 0.840956 1.71113 

0.31 0.813933 0.900185 0.986032 1.24198 2.50893 

0.37 1.12545 1.24213 1.35846 1.70613 3.43361 

0.43 1.47797 1.62927 1.78029 2.23222 4.48265 

0.49 1.87151 2.06162 2.2515 2.82018 5.65579 

0.55 2.30666 2.53981 2.77276 3.47082 6.95461 

0.61 2.78451 3.06502 3.34537 4.18575 8.38224 

0.67 3.30659 3.63893 3.97113 4.9672 9.94317 

0.73 3.87483 4.26365 4.65236 5.81808 11.6431 

0.79 4.49155 4.94173 5.39183 6.74181 13.489 

0.85 5.1594 5.6761 6.19274 7.74241 15.4888 

α 
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0.91 5.88144 6.4701 7.05872 8.8244 17.6515 

0.97 6.66103 7.32743 7.99381 9.99285 19.9873 

1.03 7.50192 8.25221 9.0025 11.2533 22.5072 

1.09 8.40818 9.24893 10.0897 12.612 25.2237 

1.15 9.38428 10.3225 11.2607 14.0755 28.1499 

1.21 10.4351 11.4782 12.5214 15.6511 31.3004 

1.27 11.5657 12.7219 13.878 17.3466 34.6909 

1.33 12.782 14.0596 15.3373 19.1706 38.3382 

1.39 14.0898 15.4982 16.9066 21.132 42.2607 

1.45 15.4959 17.0447 18.5937 23.2407 46.4777 

1.51 17.007 18.707 20.407 25.5072 51.0105 

1.57 18.6309 20.4932 22.3556 27.9429 55.8815 

1.63 20.3756 22.4123 24.449 30.5596 61.1148 

1.69 22.2496 24.4736 26.6978 33.3705 66.7364 

1.75 24.2622 26.6875 29.1129 36.3894 72.774 

1.81 26.4234 29.0648 31.7063 39.631 79.2572 

1.87 28.7436 31.617 34.4905 43.1113 86.2178 

1.93 31.2343 34.3567 37.4793 46.8473 93.6897 

1.99 33.9074 37.2972 40.6871 50.857 101.709 

xc      

 
Table (5):Values of the temporal amplification σ* (or the oscillation    frequency ω*)  for Ho/ HG = 10 
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Figure ( 1) : Relation between the growth rate of oscillation σ
*

  and the dimensionless  wavenumber  x  for H0/ 

HG= 0. 
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Figure ( 2) : Relation between the growth rate of oscillation σ
*

  and the dimensionless  wavenumber  x  for H0/ 

HG= 0.5 
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Figure ( 3) : Relation between the growth rate of oscillation σ
*

  and the dimensionless  wavenumber  x  for H0/ 

HG= 1.0 
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Figure ( 4) : Relation between the growth rate of oscillation σ
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  and the dimensionless  wavenumber  x  for H0/ 

HG= 3.0 
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Figure ( 5) : Relation between the growth rate of oscillation σ
*

  and the dimensionless  wavenumber  x  for H0/ 

HG= 10 
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